Course Content
UPSC Notes Samples
Full Syllabus Covered | 100% as per Official UPSC Syllabus
0/46
1. Art & Culture Sample
Covered under topic 1. Indian culture will cover the salient aspects of Art Forms, Literature and Architecture from ancient to modern times.
0/67
1. Indian culture will cover the salient aspects of Art Forms, Literature and Architecture from ancient to modern times. (copy)
0/67
2. Modern Indian history from about the middle of the eighteenth century until the present- significant events, personalities, issues. (copy)
0/66
5. History of the world will include events from the 18th century such as Industrial revolution, World wars, Redrawal of national boundaries, Colonization, Decolonization, Political philosophies like Communism, Capitalism, Socialism etc.- their forms and effect on the society.
0/59
7. Role of women and women’s organizations, Population and associated issues, Poverty and developmental issues, Urbanization, their problems and their remedies.
0/41
10.2. Introduction to Maps
0/1
GS2
All topics that need updates are given below.
2. Functions and responsibilities of the Union and the States, issues and challenges pertaining to the federal structure, devolution of powers and finances up to local levels and challenges therein.
All topics that need updates are given below.
0/36
5. Parliament and State Legislatures – structure, functioning, conduct of business, powers & privileges and issues arising out of these.
All topics that need updates are given below.
0/31
6. Structure, organization and functioning of the Executive and the Judiciary; Ministries and Departments of the Government; pressure groups and formal/informal associations and their role in the Polity.
All topics that need updates are given below.
0/47
12. Welfare schemes for Vulnerable Sections of the Population by the Centre and States and the Performance of these schemes; Mechanisms, Laws, Institutions and Bodies constituted for the Protection and Betterment of these Vulnerable Sections.
All topics that need updates are given below.
0/33
GS3
All topics that need updates are given below.
11. Science and Technology- developments and their applications and effects in everyday life.
0/1
GS3: BIODIVERSITY AND ENVIRONMENT
All topics that need updates are given below.
1. Environment
0/151
GS4
All topics that need updates are given below.
GS3: SCIENCE AND TECHNOLOGY
All topics given below
0/1
1. Motion & Measurements
0/46
9. Metals & Non-Metals
0/23
10. Energy
0/49
12. Plant Organisms
0/33
14. Life Processes
0/42
18. Biotechnology
0/88
19. Information Technology
0/59
20. Space Technology
0/64
National & International Current Affairs (CA) 2025
Current affairs of all months are given below
delete UPSC Sample Notes [English]

iv.2. Spherical Lens Image Formation: Illuminating Perspectives through Ray Diagrams

For drawing ray diagrams in lenses, alike of spherical mirrors, we consider any two of the following rays –

Different Rays –

  •  

(i) A ray of light from the object, parallel to the principal axis, after refraction from a convex lens, passes through the principal focus on the other side of the lens. 

  1. In case of a concave lens, the ray appears to diverge from the principal focus located on the same side of the lens.

  •  
  • (ii) A ray of light passing through a principal focus, after refraction from a convex lens, will emerge parallel to the principal axis. 
    • A ray of light appearing to meet at the principal focus of a concave lens, after refraction, will emerge parallel to the principal axis.

  •  
  • (iii) A ray of light passing through the optical centre of a lens will emerge without any deviation. 
    • The ray diagrams for the image formation in a convex lens for a few positions  of  the  object.

Spherical Lens Image Formation and Optical Variations:

Details

  • Lenses form images by refracting light. 
  • The nature, position and relative size of the image formed by a convex and concave lens for various positions of the object is summarized in the table.

[Nature, position and relative size of the image formed by a convex lens for various]

 

 

 

 

 

 

 

 

[The position, size and the nature of the image formed by a convex lens for various positions of the object]

  • In conclusion it can be said that a concave lens will always give a virtual, erect and diminished image, irrespective of the position of the object.

Spherical Lens Sign Convention: Optical Measurements and Focal Insights 

  •  
  • For lenses, the sign convention is similar to that used for mirrors.  
  • All the rules for signs of distances are applied except that all measurements are taken from the optical centre of the lens. 
  • According to the convention, the focal length of a convex lens is positive and that of a concave lens is negative.

Spherical Lens Formula: Understanding Relationships in Optics:

  •  
  • This formula gives the relationship between object distance (u), image-distance (v) and the focal length (f). 
    • The lens formula is expressed as 1/v – 1/u = 1/f
  • The lens formula given above is general and is valid in all situations for any spherical lens.

Spherical Lens Magnification: Optical Enlargement and Relationships

  •  
  • The magnification produced by a lens, similar to that for spherical mirrors, is defined as the ratio of the height of the image and the height of the object. 
  • Magnification is represented by the letter m. 
  • If h is the height of the object and h′ is the height of the image given by a lens, then the magnification produced by the lens is given by,

 

 

 

  • Magnification produced by a lens is also related to the object-distance u, and the image-distance v. 
    • This relationship is given by: Magnification (m) = h′/h = v/u

Spherical Lens Power Dynamics: Optical Convergence and Divergence

  •  
  • The ability of a lens to converge or diverge light rays depends on its focal length. 
    • Example: A convex lens of short focal length bends the light rays through large angles, by focussing them closer to the optical centre. 
    • Similarly, concave lenses of very short focal length cause higher divergence than the one with longer focal length. 
  • The degree of convergence or divergence of light rays achieved by a lens is expressed in terms of its power. 
  • The power of a lens is defined as the reciprocal of its focal length. 
    • It is represented by the letter P. 
    • The power P of a lens of focal length f is given by: 

  • The SI unit of power of a lens is ‘dioptre’. 
    • It is denoted by the letter D. 
  • If ‘f’ is expressed in metres, then, the power is expressed in dioptres. 
  • Thus, 1 dioptre is the power of a lens whose focal length is 1 metre. 

1D = 1m-1. 

  • The power of a convex lens is positive and that of a concave lens is negative. 
  • Opticians prescribe corrective lenses indicating their powers.

Designing a lens

  • Many optical instruments consist of a number of lenses. 
  • They are combined to increase the magnification and sharpness of the image. 
  • The net power (P ) of the lenses placed in contact is given by the algebraic sum of the individual powers P1 , P2 , P3 , … as P = P1 + P2 + P3 + … 
  • The use of powers, instead of focal lengths, for lenses is quite convenient for opticians. 
  • During eye-testing, an optician puts several different combinations of corrective lenses of known power, in contact, inside the testing spectacles’ frame. 
  • The optician calculates the power of the lens required by simple algebraic addition. 
    • Example: A combination of two lenses of power + 2.0 D and + 0.25 D is equivalent to a single lens of power + 2.25 D. 
  • The simple additive property of the powers of lenses can be used to design lens systems to minimise certain defects in images produced by a single lens. 
  • Such a lens system, consisting of several lenses in contact, is commonly used in the design of lenses of camera, microscopes and telescopes.